某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为 .两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:(1)请预测旅客乘到第一班客车的概率;(2)旅客候车时间的分布列;(3)旅客候车时间的数学期望。
(本小题共14分)已知函数。 (1)若为方程的两个实根,并且A,B为锐角,求m的取值范围; (2)对任意实数,恒有,证明:.
已知函数 (1)求函数的最小正周期及在区间上的最大值和最小值; (2)若,求的值。
(本小题满分12分)设函数. (1)判断函数的奇偶性,并写出时的单调增区间; (2)若方程有解,求实数的取值范围.
(本题满分15分) 已知函数f (x)=x3+ax2+bx, a , bR. (Ⅰ) 曲线C:y=f (x) 经过点P (1,2),且曲线C在点P处的切线平行于直线y=2x+1,求a,b的值; (Ⅱ) 已知f (x)在区间 (1,2) 内存在两个极值点,求证:0<a+b<2.
(本小题共15分)已知函数。 (1)若为方程的两个实根,并且A,B为锐角,求m的取值范围; (2)对任意实数,恒有,证明:.