某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点,交曲线于点,设.(1)将△(为坐标原点)的面积表示成的函数;(2)若在处,取得最小值,求此时的值及的最小值.
已知是等比数列的前项和,,,成等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库顶部面积的最大允许值是多少?(2)为使达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
在△ABC中,已知A=,.(Ⅰ)求cosC的值;(Ⅱ)若BC=2,D为AB的中点,求CD的长.
已知全集U=R,非空集合<,<.(1)当时,求;(2)命题,命题,若q是p的必要条件,求实数的取值范围.
已知圆心为的圆方程为,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求点的坐标;(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.(3)求线段长度的最小值.