某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点,交曲线于点,设.(1)将△(为坐标原点)的面积表示成的函数;(2)若在处,取得最小值,求此时的值及的最小值.
已知夹角为,且,,求: (1);(2)与的夹角。
已知函数的图像在点处的切线方程为. (1)求实数、的值; (2)求函数在区间上的最大值; (3)曲线上存在两点、,使得△是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.
已知数列的前项和为,且对于任意的,恒有, 设. (1)求证:数列是等比数列; (2)求数列的通项公式和; (3)若,证明:.
如图,在四棱锥中,底面,,,是的中点 (1)证明; (2)证明平面; (3)求二面角的正弦值的大小
已知是等比数列的前项和,,,成等差数列,且. (1)求数列的通项公式; (2)是否存在正整数,使得?若存在,求出符合条件的所有的集合; 若不存在,说明理由.