已知全集U=R,非空集合<,<.(1)当时,求;(2)命题,命题,若q是p的必要条件,求实数的取值范围.
已知函数 (1)设,当m≥时,求g(x)在[]上的最大值; (2)若上是单调减函数,求实数m的取值范围.
已知,点A(s,f(s)), B(t,f(t)) (I) 若,求函数的单调递增区间; (II)若函数的导函数满足:当|x|≤1时,有||≤恒成立,求函数的解析表达式;(III)若0<a<b, 函数在和处取得极值,且,证明:与不可能垂直.
已知二次函数为常数);.若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.(Ⅰ)求a、b、c的值;(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;(Ⅲ)若问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
已知函数,函数.(1)当时,求函数f(x)的最小值;(2)设函数h(x)=(1-x)f(x)+16,试根据m的取值分析函数h(x)的图象与函数g(x)的图象交点的个数.
设函数(1)求函数f(x)的单调区间,并求函数f(x)的极大值和极小值;(2)当x∈[a+1, a+2]时,不等,求a的取值范围.