已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.(1)求椭圆的方程;(2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.(1)证明数列是“平方递推数列”,且数列为等比数列;(2)设(1)中“平方递推数列”的前项积为,即,求;(3)在(2)的条件下,记,求数列的前项和,并求使 的的最小值.
如图,公园要把一块边长为的等边三角形的边角地修成草坪,把草坪分成面积相等的两部分,在上,在上.(1)设,,试用表示函数;(2)如果是灌溉水管,希望它最短,的位置应该在哪里?
关于的方程的两根分别在区间与内,求的取值范围.
解关于的不等式.
已知正项数列的前n项和为,且(1)求、;(2)求证:数列是等差数列;(3)令,问数列的前多少项的和最小?最小值是多少?