设函数. (Ⅰ)证明:当,;(Ⅱ)设当时,,求的取值范围.
已知函数,其中若在x=1处取得极值,求a的值;求的单调区间;(Ⅲ)若的最小值为1,求a的取值范围。
在数列中,(I)设,求数列的通项公式(II)求数列的前项和
已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD.(Ⅰ)证明:平面PAD⊥平面PCD;(Ⅱ)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分.
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5. 同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和.(Ⅰ)求事件“不大于6”的概率;(Ⅱ)“为奇数”的概率和“为偶数”的概率是不是相等?证明你的结论.
设函数的最小正周期为.(Ⅰ)求的值.(Ⅱ)若函数的图像是由的图像向右平移个单位长度得到,求的单调增区间.