已知函数,其中,为参数,且.(1)当时,判断函数是否有极值;(2)要使函数的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围.
已知满足:,(1)求;(2)猜想的表达式,并用数学归纳法证明你的结论
二项式(为大于零的常数)的展开式中各项的二项式系数之和为1024,按的升幂排列的前三项的系数之和是201.(1)求常数和; (2)求该二项展开式中含项的系数.
已知复数,当实数为何值时,(1)为实数; (2)为虚数; (3)为纯虚数.
设函数.(1)当,时,求所有使成立的的值。(2)若为奇函数,求证:;(3)设常数<,且对任意x,<0恒成立,求实数的取值范围.
行驶中的汽车,在刹车后由于惯性的作用,要继续向前滑行一段距离后才会停下,这段距离叫刹车距离。为测定某种型号汽车的刹车性能,对这种型号的汽车在国道公路上进行测试,测试所得数据如下表。根据表中的数据作散点图,模拟函数可以选用二次函数或函数(其中为常数).某人用(0,0),(10,1.1),(30,6.9)求出相关系数,用(60,24.8)验证,请问用以上哪个函数作为模拟函数较好,并说明理由.在一次由这种型号的汽车发生的交通事故中,测得刹车距离为14.4m,问汽车在刹车时的速度大概是多少?(其中用函数拟合,经运算得到函数式为,且)