已知函数(其中)的图象如图所示.(1) 求函数的解析式;(2) 设函数,且,求的单调区间.
已知椭圆的右焦点为且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.(1) 求椭圆的方程;(2) 是否存在过点的直线与椭圆相交于不同的两点且使得成立?若存在,试求出直线的方程;若不存在,请说明理由.
如图,在正三棱柱中,是的中点,是线段上的动点,且(1)若,求证:;(2) 求二面角的余弦值;(3) 若直线与平面所成角的大小为,求的最大值.
已知各项全不为零的数列的前项和为,且,其中(1) 求数列的通项公式;(2)在平面直角坐标系内,设点,试求直线斜率的最小值(为坐标原点).
某单位为了提髙员工身体素质,特于近期举办了一场跳绳比赛,其中男员工12人,女员工18人,其成绩编成如右所示的茎叶图(单位:分).若分数在175分以上(含175分)者定为“运动健将”,并给以特别奖励,其它人员则给予“运动积极分子”称号,同时又特别提议给女“运动健将”休假一天的待遇.(1)若用分层抽样的方法从“运动健将”和“运动积极分子”中提取10人,然后再从这10人中选4人,那么至少有1人是“运动健将”的概率是多少?(2)若从所有“运动健将”中选3名代表,用表示所选代表中女“运动健将”的人数,试写出的分布列,并求的数学期望.
已知函数,的部分图象如图所示.(1) 求函数的解析式;(2) 如何由函数的图象通过适当的平移与伸缩变换得到函数的图象,写出变换过程.