如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形, P A ⊥ 平面 A B C D , A P = A B , B P = B C = 2 , E , F 分别是 P B , P C 的中点. (Ⅰ)证明: E F / / 平面 P A D ; (Ⅱ)求三棱锥 E - A B C 的体积 V .
(本小题满分13分)如图,是单位圆与轴正半轴的交点,,为单位圆上不同的点,,,,(Ⅰ)当为何值时,?(Ⅱ)若,则当为何值时,点在单位圆上?
(本小题满分13分)已知函数,,.(Ⅰ)求常数的值;(Ⅱ)求函数的最小正周期和最大值.
设椭圆的焦点分别为,直线交轴于点,且.(1)试求椭圆的方程;(2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.
已知方程有两个不等的负根;方程无实根,若或为真,且为假,求的取值范围。
已知抛物线C:,为抛物线上一点,为关于轴对称的点,为坐标原点.(1)若,求点的坐标;(2)若过满足(1)中的点作直线交抛物线于两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标