已知函数,为实数)有极值,且在处的切线与直线平行.(Ⅰ)求实数a的取值范围;(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;(Ⅲ)设函数试判断函数在上的符号,并证明:().
(本小题满分12分) 已知函数的图像都过点P(2,0),且在点P处 有相同的切线。 (I)求实数a、b、c的值; (II)设函数上的最小值。
(本小题满分12分) 某客运公司争取到一个相距100海里的甲、乙两地的客运航线权。已知轮船的平均载客人数为200人,轮船每小时使用的燃料费和轮船航行速度的平方成正比,轮船的最大速度为20海里/小时,当船速为10海里/小时,它的燃料费用是每小时60元,其余费用(不论速度如何)总计是每小时150元,假定轮船从甲地到乙地匀速航行。 (I)求轮船每小时的燃料费W与速度v的关系式; (II)若公司打算从每位乘客身上获得利润10元,那么该公司设计的船票价格最低可以是多少?(精确到1元,参考数据:)
(本小题满分12分)A是锐角。 (I)求的值; (II)若的面积。
(本小题满分12分)已知△ABC三个内角A、B、C的对边分别为a、b、c,向量。 (1)求A; (2)已知,求bc的最大值。
(本小题满分12分)将一张2×6米的硬钢板按图纸的要求进行操作:沿线裁去阴影部分,把剩余的部分按要求焊接成一个有盖的长方体水箱(⑦为底,①②③④为侧面,⑤+⑥为水箱盖,其中①与③、②与④分别是全等的矩形,且⑤+⑥=⑦),设水箱的高为x米,容积为y立方米。 (1)写出y关于x的函数关系式; (2)如何设计x的大小,使得水箱的容积最大?