定义在区间上的函数的图象关于直线对称,当时函数图象如图所示. (Ⅰ)求函数在的表达式;(Ⅱ)求方程的解;(Ⅲ)是否存在常数的值,使得在上恒成立;若存在,求出 的取值范围;若不存在,请说明理由.
已知数列的首项其中,,令集合. (1)若是数列中首次为1的项,请写出所有这样数列的前三项; (2)求证:对恒有成立; (3)求证:.
已知函数,为自然对数的底, (1)求的最值; (2)若关于方程有两个不同解,求的范围.
函数的部分图象如下图所示,将的图象向右平移个单位后得到函数的图象. (1)求函数的解析式; (2)若的三边为成单调递增等差数列,且,求的值.
已知是单调递增的等差数列,首项,前项和为;数列是等比数列,首项 (1)求的通项公式; (2)令求的前20项和.
设函数. (1)求的最小正周期; (2)当时,求实数的值,使函数的值域恰为并求此时在上的对称中心.