设函数.(I)求函数的单调递增区间;(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.
在极坐标系中,曲线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数)(1)写出直线l和曲线C的普通方程;(2)设直线l和曲线C交于A,B两点,定点P(—2,—3),求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC(1)求证:BE=2AD;(2)当AC=3,EC=6时,求AD的长.
已知函数函数在处取得极值1.(1)求实数b,c的值;(2)求在区间[-2,2]上的最大值.
已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线(1)求曲线C的方程,(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
如图,四棱锥中,底面为平行四边形,底面(1)证明:平面平面;(2)若二面角大小为,求与平面所成角的正弦值.