已知函数.(Ⅰ)讨论函数的单调区间;(Ⅱ)当时,若函数在区间上的最大值为28,求的取值范围.
已知(1)求的最小正周期,并求其图象对称中心的坐标;(2)当时,求函数的值域。
已知A、B是抛物线y2=2px(p>0)上的两点,且满足OA⊥OB(O为坐标原点).求证:(1)A、B两点的横坐标之积、纵坐标之积分别为定值;(2)直线AB经过一个定点.
已知椭圆,是否存在斜率为k(k≠0)的直线,使与椭圆交于不同的两点A、B,且线段的垂直平分线经过点M(0,-1),求斜率k的取值范围.
中心在坐标原点,焦点在x轴上的椭圆,它的离心率为,与直线x+y-1=0相交于两点M、N,且以为直径的圆经过坐标原点.求椭圆的方程.
已知点A,动点在双曲线上运动,且,求点P的轨迹方程.