若盒中装有同一型号的灯泡共只,其中有只合格品,只次品。(1) 某工人师傅有放回地连续从该盒中取灯泡次,每次取一只灯泡,求次取到次品的概率;(2) 某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望.
在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.
已知函数的定义域为,若在上为增函数,则称为“一阶比增函数”. (Ⅰ) 若是“一阶比增函数”,求实数的取值范围; (Ⅱ) 若是“一阶比增函数”,求证:,; (Ⅲ)若是“一阶比增函数”,且有零点,求证:有解.
已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。
设函数. (I)当时,求的单调区间; (II)若对恒成立,求实数的取值范围.
已知命题:“,都有不等式成立”是真命题。 (I)求实数的取值集合; (II)设不等式的解集为,若是的充分不必要条件,求实数的取值范围.