等比数列的前n项和,已知对任意的,点均在函数的图像上.(1)求r的值.(2)当b=2时,记,求数列的前n项和.
已知中,,,,记,(1)求关于的表达式;(2)求的值域;
如图,我市拟在长为的道路的一侧修建一条运动赛道。赛道的前一部分为曲线段,该曲线段为函数的图像,且图像的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定。(1)求的值和两点间的距离(2)应如何设计,才能使折线段赛道最长
在中,为锐角,角所对应的边分别为,且(I)求的值; (II)若,求的值。
已知函数 f ( x ) = ln ( 1 + x ) - x 1
(Ⅰ)求 f ( x ) 的单调区间; (Ⅱ)记 f ( x ) 在区间 0 , π ( n ∈ N * )上的最小值为 b x 令 a n = ln ( 1 + n ) - b x . (ⅰ)如果对一切 n ,不等式 a n < a n - 2 - c a n + 2 恒成立,求实数 c 的取值范围; (ⅱ)求证: a 1 a 3 + a 1 a 3 a 2 a 4 + . . . + a 1 a 3 . . . a 2 n - 1 a 2 a 4 . . . a 2 n < 2 a n + 1 - 1 .
如图,椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的一个焦点是 F ( 1 , 0 ) , O 为坐标原点。
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点 F 的直线 l 交椭圆于 A 、 B 两点,若直线 l 绕点 F 任意转动,值有 | O A | 2 + | O B | 2 < | A B | 2 ,求 a 的取值范围。