设(Ⅰ)的图象关于原点对称,当时,的极小值为,求的解析式。(Ⅱ)若,是上的单调函数,求的取值范围
(1)(满分7分) 选修4一2:矩阵与变换二阶矩阵对应的变换将点与分别变换成点与.(Ⅰ)求矩阵;(Ⅱ)设直线在矩阵对应变换的作用下得到直线: ,求的方程.
设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A,B两点。(Ⅰ)求椭圆M的方程;(Ⅱ)求证| AB | =;(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB| + |CD|的最小值。
已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP到点N,且(Ⅰ)求动点N的轨迹方程;(Ⅱ)直线l与动点N的轨迹交于A、B两点,若,且,求直线l的斜率k的取值范围.
双曲线的中心在原点,右焦点为,渐近线方程为.(Ⅰ)求双曲线的方程;(Ⅱ)设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点。
若圆C经过点和,且圆心C在直线上,求圆C的方程.