设函数的最大值为,最小值为,其中.(1)求、的值(用表示);(2)已知角的顶点与平面直角坐标系中的原点重合,始边与轴的正半轴重合,终边经过点.求的值.
(本小题满分12分)如图,在四棱锥中,底面ABCD为菱形,底面,为的中点,为的中点,求证:(1)平面;(2).
(本小题满分12分)已知函数(1)求最小正周期和单调递减区间;(2)若上恒成立,求实数的取值范围。
((本小题满分12分)已知偶函数经过点(1,1),为数列的前n项和,点 ()在曲线上.(1)求的解析式(2)求的通项公式(3)数列的第n项是数列的第项(),且.求和
(本小题满分10分)如果有穷数列(为正整数)满足条件,,…,,即(),我们称其为“对称数列”. 例如,数列与数列都是“对称数列”. (1)设是7项的“对称数列”,其中是等差数列,且,.依次写出的每一项;(2)设是项的“对称数列”,其中是首项为,公比为的等比数列,求各项的和;(3)设是项的“对称数列”,其中是首项为,公差为的等差数列.求前项的和.
(本小题满分10分)如图,已知,、分别是两边上的动点。(1)当,时,求的长;(2)、长度之和为定值4,求线段最小值。