已知等差数列 a n 的前 n 项和 S n 满足 S 3 = 0 , S 5 = - 5 。 (Ⅰ)求 a n 的通项公式; (Ⅱ)求数列 1 a 2 n - 1 a 2 n + 1 的前 n 项和。
(本小题10分)已知=(cos+sin,-sin),=(cos-sin,2cos).(1)设f(x)=,求f(x)的最小正周期和单调递减区间;(2)设有不相等的两个实数x1,x2∈,且f(x1)=f(x2)=1,求x1+x2的值.
(本小题满分10分)选修4~5:不等式选讲设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:;(2)比较|1-4ab|与2|a-b|的大小,并说明理由.
(本小题满分10分)选修4~4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为r=6sinq.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B.求∣PA∣+∣PB∣的最小值.
(本小题满分10分)选修4~1:几何证明选讲 如图,AB是⊙O的一条切线,切点为B,直线ADE,CFD,CGE都是⊙O的割线,已知AC=AB. (1)若CG=1,CD=4,求的值; (2)求证:FG//AC.
(本小题满分12分)已知函数f(x)=(e为自然对数的底数).(1)若a<1,求函数f(x)的单调区间;(2)若a=1,函数φ(x)=xf(x)+t f ′(x)+,存在实数x1,x2∈[0,1],使 2φ(x1)<φ(x2)成立,求实数t的取值范围.