已知函数 f ( x ) = x 2 + a x + b , g ( x ) = e x ( c x + d ) ,若曲线 y = f ( x ) 和曲线 y = g ( x ) 都过点 P ( 0 , 2 ) ,且在点 P 处有相同的切线 y = 4 x + 2 .
(Ⅰ)求 a , b , c , d 的值 (Ⅱ)若 x ≥ - 2 时, f ( x ) ≤ k g ( x ) ,求 k 的取值范围。
在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级. 某考场考生两科的考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人. (1)求该考场考生中“阅读与表达”科目中成绩为A的人数; (2)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分. (i)求该考场考生“数学与逻辑”科目的平均分; (ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分, 6人8分. 从这10中随机抽取两人,求两人成绩之和大于等于18的概率.
已知函数, (1)求函数的最大值和最小正周期; (2)设的内角的对边分别且,,若求值.
已知数列{an}的前n项和为Sn,且对一切正整数n成立 (1)求出数列{an}的通项公式; (2)设,求数列的前n项和.
某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?最大利润是多少?
若,且,求及的最小值.