已知函数 f ( x ) = x 2 + a x + b , g ( x ) = e x ( c x + d ) ,若曲线 y = f ( x ) 和曲线 y = g ( x ) 都过点 P ( 0 , 2 ) ,且在点 P 处有相同的切线 y = 4 x + 2 .
(Ⅰ)求 a , b , c , d 的值 (Ⅱ)若 x ≥ - 2 时, f ( x ) ≤ k g ( x ) ,求 k 的取值范围。
已知函数在上为增函数,且,为常数,.(1)求的值;(2)若在上为单调函数,求的取值范围;(3)设,若在上至少存在一个,使得成立,求的取值范围.
已知椭圆C的中心在原点,焦点在轴上,椭圆上的点到左、右焦点的距离之和为,离心率.(1)求椭圆C的方程;(2)过左焦点的直线与椭圆C交于点,以为邻边作平行四边形,求该平行四边形对角线的长度的取值范围.
如图:在直角三角形ABC中,已知, D为AC的中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起,二面角的大小记为.⑴求证:平面平面BCD; ⑵当时,求的值; ⑶在⑵的条件下,求点C到平面的距离.
已知数列中,(1)求证:数列为等比数列;(2)设数列的前项的和为,若,求:正整数的最小值.
向量,设函数.(1)求的最小正周期与单调递减区间;(2)在中,分别是角的对边,若的面积为,求的值.