已知函数 f ( x ) = x 2 + a x + b , g ( x ) = e x ( c x + d ) ,若曲线 y = f ( x ) 和曲线 y = g ( x ) 都过点 P ( 0 , 2 ) ,且在点 P 处有相同的切线 y = 4 x + 2 .
(Ⅰ)求 a , b , c , d 的值 (Ⅱ)若 x ≥ - 2 时, f ( x ) ≤ k g ( x ) ,求 k 的取值范围。
已知,其中,, (Ⅰ)若为上的减函数,求应满足的关系; (Ⅱ)解不等式。
已知的三内角、、所对的边分别是,,,向量与向量的夹角的余弦值为 (Ⅰ)求角的大小; (Ⅱ)若,求的范围。
已知函数,(且). (1)设,令,试判断函数在上的单调性并证明你的结论; (2)若且的定义域和值域都是,求的最大值; (3)若不等式对恒成立,求实数的取值范围;
已知函数. (Ⅰ) 求的单调区间; (Ⅱ) 求所有的实数,使得不等式对恒成立.
已知等比数列的前项和.设公差不为零的等差数列满足:,且成等比. (Ⅰ) 求及; (Ⅱ) 设数列的前项和为.求使的最小正整数的值.