已知函数在上为增函数,且,为常数,.(1)求的值;(2)若在上为单调函数,求的取值范围;(3)设,若在上至少存在一个,使得成立,求的取值范围.
(本小题满分14分) 如图,已知椭圆,是椭圆的顶点,若椭圆的离心率,且过点. (Ⅰ)求椭圆的方程; (Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.
(本小题满分12分) 如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且. (Ⅰ)求证:平面平面; (Ⅱ)为线段上的一个动点,当线段的长为多少时,与平面所成的角为?
(本小题满分12分) 已知双曲线C与椭圆有相同的焦点,实半轴长为. (Ⅰ)求双曲线的方程; (Ⅱ)若直线与双曲线有两个不同的交点和,且 (其中为原点),求的取值范围.
(本小题满分10分) 已知抛物线与直线交于两点. (Ⅰ)求弦的长度; (Ⅱ)若点在抛物线上,且的面积为,求点P的坐标.
(本小题满分12分) 在如图的多面体中,⊥平面,,,,,,,是的中点. (Ⅰ) 求证:平面; (Ⅱ) 求二面角的余弦值.