浑南“万达广场”五一期间举办“万达杯”游戏大赛.每5人组成一队,编号为1,2,3,4,5.在其中的投掷飞镖比赛中,要求随机抽取3名队员参加,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面为圆形,为正方形).每队至少有2人“成功”则可获得奖品(其中任何两位队员“成功”与否互不影响).(Ⅰ)某队中有3男2女,求事件A:“参加投掷飞镖比赛的3人中有男有女”的概率;(Ⅱ)求某队可获得奖品的概率.
已知n∈N*,求证:··……>.
已知|a|<1,|b|<1,求证:>1
已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+m. (1)若m=4,求直线l被圆C所截得弦长的最大值; (2)若直线l是圆心下方的切线,当a在的变化时,求m的取值范围.
已知圆x2+y2-4ax+2ay+20(a-1)=0. (1)求证对任意实数a,该圆恒过一定点; (2)若该圆与圆x2+y2=4相切,求a的值
设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足·=0. (1)求m的值; (2)求直线PQ的方程.