已知圆 M : ( x + 1 ) 2 + y 2 = 1 ,圆 N : ( x - 1 ) 2 + y 2 = 9 ,动圆 P 与圆 M 外切并与圆 N 内切,圆心 P 的轨迹为曲线 C . (Ⅰ)求 C 的方程; (Ⅱ)l是与圆 P ,圆 M 都相切的一条直线,l与曲线 C 交于 A , B 两点,当圆 P 的半径最长时,求 A B .
已知函数为偶函数,其图象上相邻两个最高点之间的距离为. (1)求函数的解析式. (2)若,求的值.
已知函数 (1)求函数的最小正周期. (2)当时,求函数的单调减区间.
(满分10分) 如下图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2. (I)求AC的长; (II)求证:BE=EF.
(满分12分)设函数. (Ⅰ)求函数的单调递增区间; (II)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
(满分12分)已知椭圆的一个顶点为B,离心率, 直线l交椭圆于M、N两点. (Ⅰ)求椭圆的标准方程; (II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线的方程.