已知圆 M : ( x + 1 ) 2 + y 2 = 1 ,圆 N : ( x - 1 ) 2 + y 2 = 9 ,动圆 P 与圆 M 外切并与圆 N 内切,圆心 P 的轨迹为曲线 C . (Ⅰ)求 C 的方程; (Ⅱ)l是与圆 P ,圆 M 都相切的一条直线,l与曲线 C 交于 A , B 两点,当圆 P 的半径最长时,求 A B .
已知函数(其中是自然对数的底数),,. (1)记函数,当时,求的单调区间; (2)若对于任意的,,,均有成立,求实数的取值范围.
已知各项均为正数的数列的前项和为,满足:(其中为常数). (1)若,,数列是等差数列,求的值; (2)若数列是等比数列,求证:.
设是等比数列的前项和,,,成等差数列. (1)设此等比数列的公比为,求的值; (2)问:数列中是否存在不同的三项,,成等差数列?若存在,求出,,满足 的条件;若不存在,请说明理由.
已知向量,,满足,且与的夹角等于,与的夹角等于,,求,.
已知中,角、、所对的边分别为、、,满足. (1)求角的值; (2)若,,成等差数列,试判断的形状.