若,其中.(1)当时,求函数在区间上的最大值;(2)当时,若恒成立,求的取值范围.
如图是求 的算法的程序框图.(1)标号①处填 .标号②处填 .(2)根据框图用直到型(UNTIL)语句编写程序.
函数的图象如下图所示.(1)求解析式中的值; (2)该图像可由的图像先向_____(填“左”或“右”)平移_______个单位,再横向拉伸到原来的_______倍.纵向拉伸到原来的______倍得到.
已知, .(1)判断的奇偶性并加以证明;(2)判断的单调性并用定义加以证明;(3)当的定义域为时,解关于m的不等式.
探究函数的图像时,.列表如下:
观察表中y值随x值的变化情况,完成以下的问题:⑴函数的递减区间是 ,递增区间是 ;⑵若对任意的恒成立,试求实数m的取值范围.
已知实数,曲线与直线的交点为(异于原点),在曲线上取一点,过点作平行于轴,交直线于点,过点作平行于轴,交曲线于点,接着过点作平行于轴,交直线于点,过点作平行于轴,交曲线于点,如此下去,可以得到点,,…,,… . 设点的坐标为,.(Ⅰ)试用表示,并证明; (Ⅱ)试证明,且();(Ⅲ)当时,求证: ().