若,其中.(1)当时,求函数在区间上的最大值;(2)当时,若恒成立,求的取值范围.
已知是一个等差数列,且,.(Ⅰ)求的通项; (Ⅱ)求前项和的最大值.
设的内角的对边分别为.已知,求: (Ⅰ)的大小; (Ⅱ)的值.
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程; (II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
.某初级中学共有学生2000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y245,z245,求初三年级中女生比男生多的概率.
给定抛物线C:y2=4x,F是C的焦点,过点F的直线与C相交于A、B两点。 (1)设的斜率为1,求与夹角的余弦值; (2)设,若∈[4,9],求在y轴上截距的变化范围。