若,其中.(1)当时,求函数在区间上的最大值;(2)当时,若恒成立,求的取值范围.
在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点. (Ⅰ)证明:AC⊥SB; (Ⅱ)求二面角N—CM—B的大小; (Ⅲ)求点B到平面CMN的距离.
在平面几何中,我们学习了这样一个命题:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比。请你类比写出在立体几何中,有关四面体的相似性质,并证之。
已知在四面体ABCD中,= a,= b,= c,G∈平面ABC.则G为△ABC的重心的充分必要条件是(a+b+c);
如图,已知边长为的正三角形中,、分别为和的中点,面,且,设平面过且与平行。 求与平面间的距离?
已知直三棱柱中,,点N是的中点,求二面角的平面角的大小。