已知在四棱锥中,底面是矩形,平面,,,分别是的中点.(1)求证:平面;(2)求二面角的余弦值.
已知向量,,设函数,.(Ⅰ)求函数的最小正周期;(Ⅱ)若,求函数值域.
某种产品按质量标准分成五个等级,等级编号依次为1,2,3,4,5.现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
(I)若所抽取的20件产品中,等级编号为4的恰有3件,等级编号为5的恰有2件,求,,的值;(Ⅱ)在(I)的条件下,将等级编号为4的3件产品记为,等级编号为5的2件产品记为,现从这5件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级编号恰好相同的概率.
已知函数(Ⅰ)若函数在处取到极值,求的值.(Ⅱ)设定义在上的函数在点处的切线方程为,若在内恒成立,则称为函数的的“HOLD点”.当时,试问函数是否存在“HOLD点”,若存在,请至少求出一个“HOLD点”的横坐标;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,经过点,离心率.(Ⅰ)求椭圆的方程;(Ⅱ)椭圆的左、右顶点分别为、,点为直线上任意一点(点不在轴上),连结交椭圆于点,连结并延长交椭圆于点,试问:是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
如图,已知平面平面,与分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,,点为的重心,为中点,,(Ⅰ)当时,求证://平面(Ⅱ)若直线与所成角为,试求二面角的余弦值.