如图,已知平面平面,与分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,,点为的重心,为中点,,(Ⅰ)当时,求证://平面(Ⅱ)若直线与所成角为,试求二面角的余弦值.
已知一次函数的反函数为,且,若点在曲线上,,对于大于或等于2的任意自然数均有.(Ⅰ)求的表达式;(Ⅱ)求的通项公式;(Ⅲ)设,求.
已知火箭的起飞重量M是箭体(包括搭载的飞行器)的重量m和燃料重量x之和.在不考虑空气阻力的条件下,假设火箭的最大速度y关于x的函数关系式为:当燃料重量为吨(e为自然对数的底数,)时,该火箭的最大速度为4(km/s).(Ⅰ)求火箭的最大速度与燃料重量x吨之间的函数关系式;(Ⅱ)已知该火箭的起飞重量是544吨,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s,顺利地把飞船发送到预定的轨道?
已知函数(Ⅰ)求函数的最大值;(Ⅱ)当时,求证:.
用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面朝上的次为;乙抛掷3次,记正面朝上的次为.(Ⅰ)分别求和的期望;(Ⅱ)规定:若>,则甲获胜;否则,乙获胜.求甲获胜的概率.
已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)若函数在[-,]上的最大值与最小值之和为,求实数的值.