已知函数在处取得极值.(Ⅰ)求的解析式;(Ⅱ)设是曲线上除原点外的任意一点,过的中点且垂直于轴的直线交曲线于点,试问:是否存在这样的点,使得曲线在点处的切线与平行?若存在,求出点的坐标;若不存在,说明理由;(Ⅲ)设函数,若对于任意,总存在,使得,求实数的取值范围.
已知函数为幂函数,且为奇函数. (1)求的值; (2)求函数在的值域.
设,a为实数. (1)分别求; (2)若,求a的取值范围.
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1. (1)求四棱锥F﹣ABCD的体积VF﹣ABCD; (2)求证:平面AFC⊥平面CBF; (3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.
定义在上的函数满足条件:对所有正实数x,y成立,且,当时,有成立. (Ⅰ)求和的值; (Ⅱ)证明:函数在上为单调递增函数.
如图,已知矩形所在平面外一点,平面,分别是的中点,. (1)求证:平面; (2)若,求直线与平面所成角的正弦值.