对于任意的(不超过数列的项数),若数列的前项和等于该数列的前项之积,则称该数列为型数列。(1)若数列是首项的型数列,求的值;(2)证明:任何项数不小于3的递增的正整数列都不是型数列;(3)若数列是型数列,且试求与的递推关系,并证明对恒成立。
已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且. (1)求数列,的通项公式; (2)记,求证:.
如图,在四棱锥中,底面,且底面为正方形,分别为的中点. (1)求证:平面; (2)求平面和平面的夹角.
设函数. (1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为2,求的值,并求出的对称轴方程.
已知椭圆的对称轴为坐标轴,焦点是,又点在椭圆上. (1)求椭圆的方程; (2)已知直线的斜率为,若直线与椭圆交于、两点,求面积的最大值.
已知函数,曲线在点处的切线方程为. (1)求的值; (2)求在上的最大值.