如图,已知圆⊙O1与圆⊙O2外切于点P,过点P的直线交圆⊙O1于A,交圆⊙O2于B,AC为圆⊙O1直径,BD与⊙O2相切于B,交AC延长线于D.(Ⅰ)求证:(Ⅱ)若BC、PD相交于点M,则
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求;(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的的最小值.
已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在区间上的值域.
已知函数(为自然对数的底数).(Ⅰ)求函数的单调区间;(Ⅱ)当时,若对任意的恒成立,求实数的值;(Ⅲ)求证:.
已知是关于的方程的根,证明:(Ⅰ);(Ⅱ).
如图,山顶有一座石塔,已知石塔的高度为.(Ⅰ)若以为观测点,在塔顶处测得地面上一点的俯角为,在塔底处测得处的俯角为,用表示山的高度;(Ⅱ)若将观测点选在地面的直线上,其中是塔顶在地面上的射影.已知石塔高度,当观测点在上满足时看的视角(即)最大,求山的高度.