(本小题满分12分) 如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点. (Ⅰ)求证:AB1//面BDC1; (Ⅱ)求二面角C1—BD—C的余弦值; (Ⅲ)在侧棱AA1上是否存在点P,使得 CP⊥面BDC1?并证明你的结论.
(本小题满分10分) 已知直线l经过点P(1,1),倾斜角. (Ⅰ)写出直线l的参数方程 (Ⅱ)设l与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之积.
(本小题满分10分) 已知函数. (Ⅰ)解不等式≤4; (Ⅱ)若存在x使得≤0成立,求实数a的取值范围.
(本小题满分10分) 如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E. (Ⅰ)求证:△ABE≌△ACD; (Ⅱ)若AB=6,BC=4,求AE.
(本小题满分12分) 已知函数(为常数),直线l与函数的图象都相切,且l与函数的图象的切点的横坐标为l. (Ⅰ)求直线l的方程及a的值; (Ⅱ)当k>0时,试讨论方程的解的个数.
(本小题满分12分) 设椭圆的离心率,右焦点到直线的距离为坐标原点. (Ⅰ)求椭圆的方程; (II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离为定值,并求弦长度的最小值.