求椭圆.
已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程;(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
已知抛物线y2=8x上两个动点A、B及一个定点M(x0, y0),F是抛物线的焦点,且|AF|、|MF|、|BF|成等差数列,线段AB的垂直平分线与x轴交于一点N.(1)求点N的坐标(用x0表示);(2)过点N与MN垂直的直线交抛物线于P、Q两点,若|MN|=4,求△MPQ的面积.
(本小题满分12分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(1)求曲线C1的方程;(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点,点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.
(本小题满分12分)已知椭圆的离心率为,定点,椭圆短轴的端点是,,且.(1)求椭圆的方程;(2)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.