求圆心为C,半径为3的圆的极坐标方程.
如图,点P(0,−1)是椭圆C1: (a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(Ⅰ)求椭圆C1的方程;(Ⅱ)求△ABD面积取最大值时直线l1的方程.
如图1,是直角△斜边上的高,沿把△的两部分折成直二面角(如图2),于.(Ⅰ)证明:;(Ⅱ)设,与平面所成的角为,二面角的大小为,试用表示;(Ⅲ)设,为的中点,在线段上是否存在一点,使得∥平面? 若存在,求的值;若不存在,请说明理由.
一个袋子中装有6个红球和4个白球,假设袋子中的每一个球被摸到可能性是相等的。(Ⅰ)从袋子中任意摸出3个球,求摸出的球均为白球的概率;(Ⅱ)一次从袋子中任意摸出3个球,若其中红球的个数多于白球的个数,则称“摸球成功”(每次操作完成后将球放回),某人连续摸了3次,记“摸球成功”的次数为,求的分布列和数学期望。
已知函数.(Ⅰ)求函数的最小值和最小正周期;(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)已知动点到直线 的距离是它到点的距离的倍. (Ⅰ)求动点的轨迹的方程;(Ⅱ)设轨迹上一动点满足:,其中是轨迹上的点,直线与的斜率之积为,若为一动点,为两定点,.