某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5 杯,其颜色完全相同,并且其中3杯为饮料,另外2杯为饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为及格.假设此人对和两种饮料没有鉴别能力.(Ⅰ)求此人被评为优秀的概率;(Ⅱ)求此人被评为良好及以上的概率.
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,点P(1,)和A、B都在椭圆E上,且+=m(m∈R). (1)求椭圆E的方程及直线AB的斜率; (2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.
户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体720人中采用分层抽样的办法抽取50人进行了问卷调查,得到了如下列联表:
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是. (Ⅰ) 请将上面的列联表补充完整; (Ⅱ)求该公司男、女员各多少名; (Ⅲ)是否有99.5﹪的把握认为喜欢户外运动与性别有关?并说明你的理由; 下面的临界值表仅供参考:
()
已知函数,过点作曲线的切线,求切线方程.
已知命题:方程所表示的曲线为焦点在y轴上的椭圆;命题:实数满足不等式<0. (1)若命题为真,求实数的取值范围; (2)若命题是命题的充分不必要条件,求实数的取值范围
已知函数() (1)求函数的单调递减区间; (2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值