如图,在直三棱柱中,,,是的中点.(Ⅰ)求证: 平面;(Ⅱ)求二面角的余弦值.
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点. (1)证明 平面; (2)求EB与底面ABCD所成的角的正切值.
甲、乙两同学投球命中的概率分别为和,投中一次得2分,不中则得0分.如果每人投球2次,求:(Ⅰ)“甲得4分,并且乙得2分”的概率;(Ⅱ)“甲、乙两人得分相等”的概率.
已知向量a, b,若.(I)求函数的解析式和最小正周期;(II) 若,求的最大值和最小值.
选修4-5:不等式选讲 已知|x-4|+|3-x|<a (1)若不等式的解集为空集,求a的范围 (2)若不等式有解,求a的范围
选修4-4:几何证明选讲在曲线:上求一点,使它到直线:的距离最小,并求出该点坐标和最小距离。