一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记.(Ⅰ)求取最大值的概率;(Ⅱ)求的分布列及数学期望.
已知双曲线 C : x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 的左、右焦点分别为 F 1 , F 2 ,离心率为3,直线 y = 2 与 C 的两个交点间的距离为 6 . (Ⅰ)求 a , b ; (Ⅱ)设过 F 2 的直线 l 与 C 的左、右两支分别交于 A , B 两点,且 A F 1 = B F 1 ,证明: A F 2 , A B , B F 2 成等比数列.
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为 1 2 ,各局比赛的结束相互独立,第1局甲当裁判. (Ⅰ)求第4局甲当裁判的概率; (Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.
如图,四棱锥 P - A B C D 中, ∠ A B C = ∠ B A D = 90 ° , B C = 2 A D , △ P A B 和 △ P A D 都是等边三角形.
(Ⅰ)证明: P B ⊥ C D ; (Ⅱ)求二面角 A - P D - C 的大小.
设 ∆ A B C 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c , a + b + c a - b + c = a c . (Ⅰ)求 B ; (Ⅱ)若 sin A sin C = 3 - 1 4 ,求 C .
等差数列 { a n } 的前 n 项和为 S n .已知 S 3 = a 2 2 ,且 S 1 , S 2 , S 4 成等比数列,求 { a n } 的通项公式.