已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.
相关知识点
推荐套卷
已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.