图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC,使△ABC为直角三角形(点C在小正方形的顶点上,画出一个即可);(2)在图2中画出△ABD,使△ABD为等腰三角形(点D在小正方形的顶点上,画出一个即可).
(本小题满分8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“湘”、“湖”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一个球,球上的汉字刚好是“湘”的概率为多少? (2)甲从中任取一球,不放回,再从中任取一球,请用画树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“湘湖”的概率P1; (3)乙从中任取一球,记下汉字后再放回袋中,再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“湘湖”的概率为P2,请比较P1,P2的大小关系。
(本小题满分8分)已知二次函数的图象经过点( -1,-8 ),顶点为( 2, 1 ). (1)求这个二次函数的表达式; (2)分别求图象与x轴、y轴的交点坐标.
(本小题满分6分)分别根据配方法和顶点坐标公式确定下列二次函数的顶点坐标。 (配方法) ②(公式法)
在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作⊙M .使⊙M与直线OM的另一交点为点B,与轴、轴的另一交点分别为点D、A(如图),连接AM.点P是上的动点. (1)∠AOB的度数为. (2)Q是射线OP上的点,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E. ①当QE与⊙M相切时,求点E的坐标; ②在①的条件下,在点P运动的整个过程中,求△ODQ面积的最大值及点Q经过的路径长.
已知,. (1)当时,是否存在实数x,使得?如果存在,请求出x的值,如果不存在,请说明理由. (2)对给定的实数k,是否存在实数x,使?如果存在,请确定k的取值范围,如果不存在,请说明理由.