如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.
如图:已知在正方形ABCD中,E是边AB的中点,点F在BC上,且∠ADE=∠FDE。(1)求证:DF=AB+FB;(2)以E为圆心EB为半径作⊙E,试判断⊙E与直线DF的位置关系,并说明理由;(3)在⑵的条件下,若CD=4cm,点M在线段DF上从点D出发向点F运动,速度为0.5cm/s,以M为圆心,MD为半径作⊙M。当运动时间为多少秒时,⊙M与⊙E相切?
某超市经销一种销售成本为每件20元的商品.据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y件.(1)写出y与x的函数关系式及自变量x的取值范围;(2)该超市想通过销售这种商品一周获得利润8000元,销售单价应定为多少?
如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.(1)求∠BOD的度数及点O到BD的距离;(2)若DE=2BE,求的值.
如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
图中的小方格都是边长为1的正方形,△ABC的顶点都在正方形的顶点上.(1)在方格图中将△ABC先向上平移3格,再向右平移4格,画出平移后的△A1B1C1;再将△A1B1C1绕点A1顺时针旋转,画出旋转后的△A1B2C2;(2)求顶点C在整个运动过程中所经过的路径长.