学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次调查中,一共抽取了 名学生;(2)选择“步行”上学的学生有 人;(3)扇形统计图中,“私家车”所对应扇形的圆心角的度数为 ;(4)估计全校所有学生中有多少人乘坐公交车上学.
为提醒人们节约用水,及时修好漏水的水龙头.两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升. 实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如表(漏出的水量精确到1毫升):
(1)在图1的坐标系中描出上表中数据对应的点; (2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)? (3)按此漏水速度,一小时会漏水 千克(精确到0.1千克) 实验二: 小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?
已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球. (1)求从中随机取出一个黑球的概率. (2)若往口袋中再放入x个黑球,且从口袋中随机取出一个白球的概率是,求代数式的值.
如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上. (1)求抛物线的解析式. (2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标. (3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)
如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN. (1)求证:四边形AMDN是平行四边形. (2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.
如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°. (1)求∠ADC的度数; (2)求证:AE是⊙O的切线.