如图,在Rt△ABC中,∠ACB=900,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=,求⊙O的半径.
在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC. (1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG. ①求证:BE=BF. ②请判断△AGC的形状,并说明理由; (2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)
如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G. (1)猜想线段GF与GC有何数量关系?并证明你的结论; (2)若AB=3,AD=4,求线段GC的长;
水池中有水,水面是一个边长为10尺的正方形,水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度和这根芦苇的长度分别是多少?
如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上。填空:∠ABC =,BC =若点A在网格所在的坐标平面里的坐标为(1,-2),请你在图中找出一点并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标。
已知P为正方形ABCD的对角线AC上任意一点,求证:PB=PD.