设命题P:函数在区间[-1,1]上单调递减;命题q:函数的值域是R.如果命题p或q为真命题,p且q为假命题,求的取值范围.
已知不等式2|x-3|+|x-4|<2a. (Ⅰ)若a=1,求不等式的解集; (Ⅱ)若已知不等式的解集不是空集,求实数a的取值范围.
在极坐标系中,圆C的方程为=2sin(θ+),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数). (Ⅰ)求直线l和圆C的直角坐标方程; (Ⅱ)判断直线l和圆C的位置关系.
如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上. (Ⅰ)若=,=,求的值; (Ⅱ)若EF2=FA·FB,证明:EF∥CD.
已知函数f(x)=-2+lnx. (Ⅰ)若a=1,求函数f(x)的极值; (Ⅱ)若函数f(x)在区间[1,2]上为单调递增函数,求实数a的取值范围.
已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4. (Ⅰ)求椭圆M的方程; (Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.