烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.
如图是某品牌太阳能热火器的实物图和横断面示意图,已知真空集热管与支架所在直线相交于水箱横断面的圆心,支架与水平面垂直,厘米,,另一根辅助支架厘米,. (1)求垂直支架的长度;(结果保留根号) (2)求水箱半径的长度.(结果精确到0.1,参考数据:)
已知关于x的一元二次方程x2+2kx+k2﹣k=0有两个不相等的实数根. (1)求实数k的取值范围; (2)0可能是方程的一个根吗?若是,求出它的另一个根;若不是,请说明理由.
如图,已知△ABC中,点D在边AC上,且BC=CD (1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法); (2)在(1)中,设CP与AB相交于点E ,连接DE求证:BE =DE
先化简,再求值:,再选择一个使原式有意义的x代入求值.
在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大 小、质地完全相同,李晓同学从布袋里随机取出一个小球,记下数字为x,张丹同学在剩下的3个 小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y). (1)画树状图或列表,写出点Q所有可能的坐标; (2)求点Q(x,y)在函数y=﹣x+6图象上的概率.