如图,已知直线与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.(1)点C的坐标是 ,线段AD的长等于 ;(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.
(年蒙自市初中学业水平第一次模拟测试)在某市地铁施工期间,交管部门在施工路段设立了矩形路况警示牌(如图所示).已知立杆的高度是米,从路侧点处测得路况警示牌顶端点和底端点的仰角分别是和,求路况警示牌宽的值.(精确到0.1米)(参考数据:≈1.41,≈1.73)
(年贵州省铜仁市)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)
(年贵州省遵义市)如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=,DF⊥BC于F,∠CDF=. 求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin≈0.52,cos≈0.86,tan≈0.60)
(年贵州省铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD. 求证:AD=CE.
(年新疆乌鲁木齐市)如图,小俊在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C处,又测得楼顶E的仰角为60°,求楼EF的高度.(结果精确到0.1米)