我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).
(本小题满分9分)某校为了了解九年级学生数学测试成绩情况,以九年级(1) 班学生的数学测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题: (说明:A级:108分~120分;B级:102分~107分;C级:72分~101分; D级: 72分以下) (1)补全条形统计图并计算C级学生的人数占全班总人数的百分比; (2)求出D级所在的扇形圆心角的度数; (3)该班学生数学测试成绩的中位数落在哪个等级内; (4)若102分以上(包括102分)为优秀,该校九年级学生共有1500人,请你估计这次考试中数学优秀的学生共有多少人?
(本小题满分8分)如图11,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,E为BC中点,请按要求完成下列各题: (1)画AD∥BC(D为格点),连接CD; (2)通过计算说明△ABC是直角三角形; (3)在△ACB中,tan∠CAE=, 在△ACD中,sin∠CAD=.
(本小题满分8分)解方程:
(本小题满分13分)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐 标为(-8,0),点N的坐标为(-6,-4). (1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C); (2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由; (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
(本小题满分11分) 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线 BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动). (1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F与直线EN有怎样的位置关系?都请直接写出结论,不必证明或说明理由; (2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由; (3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系及点F与直线EN的位置关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.