如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
已知, BC∥OA,∠B=∠A=100°,试回答下列问题: 如图1所示,求证:OB∥AC. (2)如图2,若点E、F在线段BC上,且满足∠FOC=∠AOC ,并且OE平分∠BOF.则∠EOC的度数等于_______;(在横线上填上答案即可). (3)在(2) 的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值. (4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).
如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°, 试求:(1)∠EDC的度数; (2)若∠BCD=n°,试求∠BED的度数.(用含n的式子表示)
如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.
已知:如图, AC∥DF,直线AF分别与直线BD、CE 相交于点G、H,∠1=∠2, 求证: ∠C=∠D. 解:∵∠1=∠2(已知) ∠1=∠DGH(), ∴∠2=_________(等量代换) ∴// ___________( 同位角相等,两直线平行) ∴∠C=__( 两直线平行,同位角相等 ) 又∵AC∥DF() ∴∠D=∠ABG () ∴∠C=∠D ( )
与在平面直角坐标系中的位置如图. ⑴分别写出下列各点的坐标:; ;; ⑵说明由经过怎样的平移得到 . ⑶若点(,)是内部一点,则平移后内的对应点的坐标为; ⑷求的面积.