已知一条曲线在轴右边,上每一点到点的距离减去它到轴距离的差都等于1.(1)求曲线C的方程;(2)若过点M的直线与曲线C有两个交点,且,求直线的斜率.
解不等式(本题共8分)
(本小题满分14分)已知函数满足,且有唯一实数解。(1)求的表达式 ;(2)记,且=,求数列的通项公式。(3)记 ,数列{}的前 项和为 ,是否存在k∈N*,使得对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
(本小题满分14分)某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元。(1)若扣除投资及各种经费,则从第几年开始获取纯利润?(2)若干年后,外商为开发新项目,按以下方案处理工厂:纯利润总和最大时,以16万美元出售该厂,问多长时间可以出售该工厂?能获利多少?
(本小题满分14分)已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1, 点P(bn,bn+1)在直线x-y+2=0上。(1)求a1和a2的值; (2)求数列{an},{bn}的通项an和bn;
(本小题满分14分)已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量,,(1)若//,求证:ΔABC为等腰三角形; (2)若⊥,边长c = 2,角C = ,求ΔABC的面积 .