如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双曲线与边BC交于点D(4,m),与边AB交于点E(2,n).(1)求n关于m的函数关系式;(2)若BD=2,tan∠BAC=,求k的值和点B的坐标.
如图,已知是边长为2的等边的内切圆,求的面积.
如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,点A、B的坐标分别为果 (1)画出绕点O顺时针旋转后的; (2)写出点的坐标; (3)求四边形的面积.
解方程:
已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'. (1)如图1,∠AEE'= °; (2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系; (3)如图3,在(2)的条件下,如果CE=2,AE=,求ME的长.
已知二次函数y=x2–kx+k–1(k>2). (1)求证:抛物线y=x2–kx+k-1(k>2)与x轴必有两个交点; (2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若,求抛物线的表达式; (3)以(2)中的抛物线上一点P(m,n)为圆心,1为半径作圆,直接写出:当m取何值时,x轴与相离、相切、相交.