如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于E,以AE为直径作⊙O.(1)求证:点D在⊙O上;(2)求证:BC是⊙O的切线;(3)若AC=6,BC=8,求△BDE的面积.
今年2月,深圳市国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了我市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题: (1)请将两幅统计图补充完整; (2)在这次形体测评中,一共抽查了名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有人; (3)根据统计结果,请你简单谈谈自己的看法.
先化简,再求值:,其中a=sin30°,b=tan45°
如图(1),直线与x轴交于点A、与y轴交于点D,以AD为腰,以x轴为底作等腰梯形ABCD(AB>CD),且等腰梯形的面积是8,抛物线经过等腰梯形的四个顶点. 图(1) (1) 求抛物线的解析式; (2) 如图(2)若点P为BC上的—个动点(与B、C不重合),以P为圆心,BP长为半径作圆,与轴的另一个交点为E,作EF⊥AD,垂足为F,请判断EF与⊙P的位置关系,并给以证明; 图(2) (3) 在(2)的条件下,是否存在点P,使⊙P与y轴相切,如果存在,请求出点P的坐标;如果不存在,请说明理由.
如图,在△ABC中,已知AB=BC=AC=4cm,于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s,点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为t(s), (1)求t为何值时,; (2)当时,求证:AD平分△PQD的面积; (3)当时,求△PQD面积的最大值.
如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE. (1)求证:△ACD≌△BCE; (2)若AC=3cm,求DE的长.