已知动圆C经过点,且在x轴上截得弦长为2,记该圆圆心的轨迹为E. (Ⅰ)求曲线E的方程; (Ⅱ)过点的直线m交曲线E于A,B两点,过A,B两点分别作曲线E的切线,两切线交于点C,当△ABC的面积为时,求直线m的方程.
在1,2,3,…,100中任意取三个数字构成等差数列,有几种不同的排法?
如图,直线分抛物线与轴所围图形为面积相等的两部分,求实数的值.
(本题满分18分;第(1)小题4分,第(2)小题6分,第(3)小题8分) 设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”. (1)若,判断该数列是否为“封闭数列”,并说明理由? (2)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由; (3)试问:数列为“封闭数列”的充要条件是什么?给出你的结论并加以证明.
(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分) 设、为坐标平面上的点,直线(为坐标原点)与抛物线交于点(异于). (1)若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程; (2)若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由; (3)对(1)中点所在圆方程,设、是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
(满分16分;第(1)小题5分,第(2)小题5分,第三小题6分) 已知函数 (1)判断并证明在上的单调性; (2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值,并求出不动点; (3)若在上恒成立 , 求的取值范围.