已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,点(1,)在椭圆C上.(1)求椭圆C的方程;(2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.
设a,b,c是正实数,求证:aabbcc≥(abc).
设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤()•().当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.
设a1,a2,…,an为实数,证明:≤.
已知n个正整数的和是1000,求这些正整数的乘积的最大值.