如图,矩形,满足在上,在上,且∥∥,,,,沿、将矩形折起成为一个直三棱柱,使与、与重合后分别记为,在直三棱柱中,点分别为和的中点.(I)证明:∥平面;(Ⅱ)若二面角为直二面角,求的值.
在长方体中,,过、、三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为.(1)求棱的长;(2)若的中点为,求异面直线与所成角的余弦值.
设求的最小值.
已知圆M经过直线与圆的交点,且圆M的圆心到直线的距离为,求圆M的方程.
若不等式对任意恒成立,则的取值范围是
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线经过点P(1,1),倾斜角.(1)写出直线的参数方程; (2)设与圆相交于两点A、B,求点P到A、B两点的距离之积.