在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= .
太仓人杰地灵,为了了解学生对家乡历史文化名人的知晓情况,某校对部分学生进行了随机抽样调查,并将调查结果绘制成如图所示统计图的一部分. 根据统计图中的信息,回答下列问题: 本次抽样调查的样本容量是 ▲ _; 在扇形统计图中,“了解很少”所在扇形的圆心角是 ▲ 度; 若全校共有学生1300人,那么该校约有多少名学生“基本了解”太仓的历史文化名人?
如图,已知四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:OA=OB;若∠CAB=35°,求∠CDB的度数.
已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.
已知二次函数y=ax2+bx+2,它的图像经过点(1,2).如果用含a的代数式表示b,那么b= ;如图所示,如果该图像与x轴的一个交点为(-1,0).① 求二次函数的表达式,并写出图像的顶点坐标;②在平面直角坐标系中,如果点P到x轴与y轴的距离相等,则称点P为等距点.求出这个二次函数图像上所有等距点的坐标.当a取a1,a2时,二次函数图像与x轴正半轴分别交于点M(m,0),点N(n,0).如果点N在点M的右边,且点M和点N都在点(1,0)的右边.试比较a1和a2的大小.
如图,在△ABC中,AB=AC=10,BC=16,M为BC的中点.⊙A的半径为3,动点O从点B出发沿BC方向以每秒1个单位的速度向点C运动,设运动时间为t秒.当以OB为半径的⊙O与⊙A相切时,求t的值;探究:在线段BC上是否存在点O,使得⊙O与直线AM相切,且与⊙A相外切.若存在,求出此时t的值及相应的⊙O的半径;若不存在,请说明理由.